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ABSTRACT 

Player’s physical experience is a critical factor to consider 
in designing motion-based games that are played through 
motion sensor gaming consoles or virtual reality devices. 
However, adjusting the physical challenge involved in a 
motion-based game is difcult and tedious, as it is typically 
done manually by level designers on a trial-and-error basis. 
In this paper, we propose a novel approach for automatically 
synthesizing levels for motion-based games that can achieve 
desired physical movement goals. By formulating the level 
design problem as a trans-dimensional optimization problem 
which is solved by a reversible-jump Markov chain Monte 
Carlo technique, we show that our approach can automati-
cally synthesize a variety of game levels, each carrying the 
desired physical movement properties. To demonstrate the 
generality of our approach, we synthesize game levels for 
two diferent types of motion-based games and conduct a 
user study to validate the efectiveness of our approach. 

CCS CONCEPTS 

• Human-centered computing → User centered design; 

KEYWORDS 

Level design; optimization; exergaming; generative design 

1 INTRODUCTION 

Motion-based games, also called exercise games, are a genre 
of video games that emphasize human-computer interaction 
through body motion control. With the widespread popular-
ity of household human-computer interaction devices such 
as depth sensors (e.g., Microsoft Kinect), motion controllers 
(e.g., Wii Remote) and virtual reality devices (e.g., HTC Vive), 
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Figure 1: Our approach synthesizes levels with respect to 
joint rotation and center-of-mass movement targets for 
motion-based games. Left: part of a synthesized level com-
posed of diferent poses that require diferent player’s ef-
forts to pass. Right: a player doing a pose shown accordingly. 

many motion-based games are developed, leading to sub-
stantial research interests in exploring their applications for 
improving human ftness. 
While the potential of motion-based games for improv-

ing ftness is appealing, designing game levels for motion-
based games is difcult and tedious. The major difculty 
lies in striking the right balance to design an exciting yet 
not physically overwhelming game level. Unlike traditional 
games played with a game controller, motion-based games 
are played by users via body movements. A game level that 
is too physically challenging could easily cause fatigue on 
players and prompt them to quit the game, while a game 
level that is too static may bore the players. 

To achieve a good balance, in current practice game level 
designers often use a trial-and-error approach to manually 
adjust physical difculty of game levels [13, 36], largely based 
on their experience. This routine design process is labor and 
time intensive. 

Inspired by research on procedural content generation for 
exergames [56] and physical rehabilitation [12], we propose 
an optimization-based approach for exergame level design. 
As depicted in Figure 1, our approach is capable of automati-
cally synthesizing game levels for motion-guided game for 
achieving desirable physical movement efects specifed by 
a level designer. By formulating the design problem as an 
optimization problem, a variety of levels can be quickly and 
automatically synthesized which balance diferent design 
considerations. The synthesized levels can be used by level 
designers as a basis for further refnement. 

Body fexibility and balance are important metrics of phys-
ical ftness, which researchers attempted to improve through 
exergaming [7, 52]. We incorporate these metrics into our 
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approach, by considering the rotation of joints and the move-
ment of the center-of-mass of a player in completing a level 
synthesized by our approach. As such considerations are 
explicitly quantifed as cost terms in our approach, level de-
signers can easily estimate the physical difculty posed to 
the player in completing each synthesized level. The major 
contributions of this paper include: 

• Devising a novel optimization-based approach for syn-
thesizing levels with joint rotation and center-of mass 
movement considerations, which can serve as a sug-
gestion engine for designing the content of diferent 
pose-based applications. 

• Validating the efectiveness of our approach for synthe-
sizing pose-guided games levels via an user evaluation. 

2 RELATED WORK 

Motion-based Game Design 

One of the most important factors in designing motion-based 
games is physical challenge [40]. Recent research has inves-
tigated the relationship between gaming experience satisfac-
tion and game difculty. Sinclair et al. [48] concluded that 
the success of exergaming is associated with three factors: 
player refexes, gaming experience and player’s physical con-
ditions. Bianchi-Berthouze [4] stated from the ergonomic 
standpoint that the level of difculty should be tailored to a 
player’s ftness and coordination skills. Current practice for 
designing a motion-based game level is non-trivial and time 
consuming. Designing an appropriate game level largely de-
pends on the level designers’ game design experience, knowl-
edge of human physical conditions and manual construction. 
Level designers typically need to go through a tedious trial-
and-error process to validate the appropriateness of their 
design [20]. Mueller et al. [21, 35] summarized the general 
design guidelines of exertion games. By incorporating phys-
ical movement factors as cost terms, our approach allows 
level designers to automatically analyze such factors and 
synthesize optimized levels accordingly. 
Recent advancement and popularity of virtual and aug-

mented reality devices have created substantial demand for 
motion-based games and applications. For example, the HTC 
Vive allows a user to play sports (e.g., Virtual Sports) with 
his full body in a highly immersive virtual environment. 
Refer to Gradl et al. [14] for a recent review of virtual reality-
based exergames. When it comes to designing a full-body 
virtual reality experience, motion considerations are espe-
cially important as the user relies on his body movement to 
proceed with the virtual experience; fatigue and frustration 
can quickly build up if the design involves too much motion, 
which may prompt the user to quit the experience. Our work 
facilitates the design of motion-based virtual experiences by 
automatically optimizing such experiences with respect to 
the extent of physical movement involved. 

Y. Zhang et al. 

Exergaming Research 

Exergames allow people to exercise at home while play-
ing games with motion-sensing devices such as Microsoft 
Kinect and Wii Remote. Research [30] has been conducted 
on popular commercial exergames such as Just Dance and 
Wii Sports [11], which validated the positive health efects 
brought by exergames. Exergames are used for sports train-
ing [8, 23], breathing training [41], as well as rehabilitation 
and therapy purposes such as balance enhancement, weight 
control and cognitive-motor training. Schoene et al. [46] 
and Ogawa et al., [38] found that exergaming can poten-
tially improve cognitive functions and dual-task functions. 
Bohm-Morawitz et al. [3] and Staiano et al. [50] investigated 
the use of exergames by adolescents and adults to achieve 
weight loss. On the other hand, Kim et al. [25] proposed the 
Vizical technique for predicting energy expenditure during 
exergaming. Padala et al. [39] and Wüest et al. [55] found that 
exergaming is efective for improving balance and movement 
related physical performance of elders. In sum, exergaming 
has been successfully employed for motivating players to do 
exercise and improve their health conditions, especially for 
body fexibility and self-balance. 
In exercise science, stretching before doing exercises is 

a practice to enhance performance and reduce the risk of 
injury [53]. Diferent exercises require diferent stretching 
poses. In our approach, we use joint rotation to evaluate 
the stretching required in transitioning from one pose to 
another pose; and we use the center-of-mass movement to 
evaluate the difculty of balance control [18]. These metrics 
are commonly used in exercise science and physiotherapy 
research [5, 17, 31, 44, 54]. 

A challenge in designing exergames is on quantifying and 
evaluating the difculty of an exergame level which involves 
body movement. In HCI research, Fitts’s law [32] considers 
the movement distance and precision in the index of dif-
culty [33] for a pointing task. Recently, Lee et al. [28, 29] 
found that duration constraints also impacts the difculty of 
a pointing task. Inspired by these fndings, we devise our level 
design framework to also consider the movement distance 
(in terms of the extent of joint rotations and center-of-mass 
movement) and duration (Section 6) in evaluating a level. As 
for the movement precision, to make the synthesized game 
enjoyable to play, we allow diferent error tolerances for 
matching diferent joints as determined from trial experi-
ments, akin to the settings of popular motion-based games 
(e.g., Just Dance). 

Procedural Level Design 

Procedural techniques can be applied to automate the level 
design of platform games [9]. For example, Smith et al. [49] 
proposed a rhythm-based approach for automatically de-
signing levels for 2D games. Similarly, rule-based [19] and 
learning-based [22, 47] approaches have been applied for 



           

     
         

         
          

         
        

       
          

        
          

        
         

         
         

           
           

        
           
         

         
         

         
       
        

    

  

            
          

         
         

         
          

      
         

         
        

           
         

            
          
         

           
          

      

      

          
       

             
          

          
        

         
         

           
             
           

          
            

           
          

           
          

           
          

         
       

   

          
          

         
     

               
          

             
              

          
            

           
              

               

              
      

     

             
 

            
   

        

            

Pose-Guided Level Design 

Figure 2: Overview of our approach.
synthesizing levels for platform games such as the Super 
Mario Bros. In general, procedural techniques allow levels to 
be designed in a fast and scalable manner, while variations 
among the levels adds freshness to engage the player. 
Our approach is inspired by procedural game content 

generation works driven by the player’s gaming experi-
ence [42, 57], or "emotion" during the gameplay [51]. There 
are recent interesting eforts by HCI researchers in under-
standing balancing in exergames [1], such as for a digital 
table tennis game [2]. Such understanding can facilitate dy-
namic difcult adjustment of games [10]. Along a similar 
direction, Dimovska et al. [12] created a real-time skiing 
game which makes use of the player’s performance for syn-
thesizing the next section of a game level. Similarly, Xie et 
al. [56] considered calories burned as a metric for level design. 
Both works have demonstrated that player performance can 
be tracked and applied for level design. On the other hand, 
Yeh et al. [58] applied the Metropolis-Hastings algorithm to 
generate game scenes, where static scene items were placed 
according to the desired difculty level. In contrast, ours 
focuses on the level design of motion-based games, mainly 
considering the player’s movement during gameplay. Our 
synthesized levels were validated by extensive evaluation of 
the player’s body movement. 

3 OVERVIEW 

Figure 2 shows an overview of our approach. From a pool of 
diferent types of poses, our approach assembles a game level 
by running an optimization. In each iteration, the optimizer 
evaluates the assembled level with respect to the physical 
movement goals and other design factors, and updates the 
level by a move. The synthesis process completes as the 
synthesized level attains the design goals. 
Just Exercise: To illustrate our approach, we created a 
motion-based game called Just Exercise as an example to 
demonstrate and experiment with our approach. The design 
of Just Exercise mimics that of a game called Just Dance 
available on Nintendo Switch, Wii U, PlayStation4 and Xbox 
One. The logic of our game mimics that of the original game. 
We implemented our game to run with a Microsoft Kinect 
V2 sensor which keeps track of the player’s movement. 
Game Logic: A game level of the Just Exercise game consists 
of a sequence of exercise poses. An exercise pose belongs 
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Rest Wave-R Lean-R, Kick-L Lean-R Kick-R 

Bow Wave-L Lean-L, Kick-R Lean-L Kick-L 

Figure 3: Diferent types of poses for assembling a game 
level for the illustrative game, Just Exercise. 
to one of the pose types depicted in Figure 3. We use these 
poses as they are intuitive for our user study participants 
to learn, and they cover difernet extent of joint rotations 
and center-of-mass movement. They can also be tracked 
relatively accurately by the Kinect as a participant’s joints 
do not occlude each other when doing these poses. 

During the game, a humanoid model is shown at the center 
of the screen. As the game starts, the player is asked to follow 
the pose of the model to move his body accordingly. Diferent 
poses requires diferent player eforts to cope with. For ease 
of playing, a pose is considered to be completed if each joint 
angle of the player is within a certain error tolerance of 
the corresponding joint angle of the target pose. Refer to 
Section 9 for details of these error tolerance settings in. To 
motivate the player to follow the poses closely, we display 
the average angle matching score of all joints on the screen. 
Depending on the poses used to assemble a level, completing 
a level requires a diferent amount of physical movement. 
The supplementary video shows a gameplay demo. 

4 PROBLEM FORMULATION 

The goal of our approach is to synthesize levels optimized 
with respect to a desired extent of joints rotation and center-
of-mass movement, as well as other design factors, which 
are encoded as cost terms. 
Let l = (p1, p2, ..., pn ) denote a level, which consists of a 

number of poses pi ∈ P assembled in a sequential order, 
where P is the set of all pose types. For example, the game 
Just Exercise has a total of 10 pose types as shown in Figure 3. 

The human body, tracked by a Kinect sensor in Just Exer-
cise, is represented by 17 joints. We exclude the joints of the 
neck, hands and feet tracked by Kinect as these joints are 
insignifcant for our purposes. Let J = {ji } be the set of all 
joints. Each joint ji = (xi , θi ) is represented by a position xi 
and a rotation angle θi . The quality of a level l is evaluated 
by a total cost function CTotal(l): 

T TCTotal(l) = CMwM + CPwP , (1) 

where CM = M, C
CM] is a vector of movement costs and [CR 
M

R CMwM = [wM, w ] is a vector of weights corresponding to M 
the costs. CR 

M evaluate the movements involved M and CCM 

when following the poses in a level: the angle that each joint 
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has rotated; and the distance that the center-of-mass of the 
Dbody has shifted. CP = [CP , CP

V] is a vector of game-specifc 
prior costs encoding design priors such as the duration of 
the level and the variation between adjacent poses, and wP = 

D V[wP , wP ] stores the weights of these costs. Section 6 includes 
further details. 

5 TRANSITION PRECOMPUTATION 

To facilitate the computation of costs during the optimization, 
we precompute the movements involved when transition-
ing between every pose types. Specifcally, for a transition 
from pose i to pose j, we compute the joint rotation Ri , j ,k 
of each joint k , and the center-of-mass movement Mi , j . Fig-
ure 5 visualizes example data precomputed for transitioning 
between several poses. The supplementary material contains 
full visualization for every pair of poses. 
For a transition from pose i to 

pose j , we compute the minimum 
angle rotation of diferent joints 
to achieve the transition. Figure 4 
shows an illustration. For each Figure 4: Example 

joint k , Ri , j ,k stores its rotation movement sequence. 
computed as the absolute angle that the joint has rotated 
in transitioning from pose i to pose j. Similarly, the center-
of-mass movement from pose i to pose j is stored in Mi , j .Í
We approximate the center-of-mass c = 1 κi xi by the 

|J | ji 
average positions of all joints, weighted by the approximate 
mass κi of each joint ji [43]. 

6 COST TERMS 

In exercise science literature [17, 39], exergaming has been 
successfully employed for improving body fexibility and 
self-balance by using joint rotation and center-of-mass move-
ment as metrics for evaluation. Hence, we demonstrate how 
stretching and balancing can be considered by our optimization-
based game level design framework. Accordingly, we defne 
two pose-related costs based on joint rotation and center-
of-mass movement. To demonstrate the extensibility of our 
framework for incorporating other level design factors, we 
also include two game-related costs (e.g., duration and varia-
tion costs). We apply a Gaussian model in our cost functions. 
For equation 2-4, we penalize deviation from the desired 
targets. For equation 5, we encourage diferences in adjacent 
poses to avoid the formation of monotonous levels. 
Movement Costs 
We defne two costs to evaluate the movements involved in 
completing a level l . 
Joint Rotation Cost: The extent of joint rotation is com-
monly used as a metric for evaluating body fexibility in 
exercise science and physiotherapy research [5, 17]. As we 
want our synthesized level to consider body fexibility also, 

Y. Zhang et al. 

(a) Joint Rotation (b) Center-of-Mass Movement 

Figure 5: Example precomputation of (a) joint rotation and 
(b) center-of-mass movement. Each cell corresponds to tran-
sitioning from Pose 1 to Pose 2. For (a), each joint is colored 
according to the normalized magnitude of its rotation. For 
(b), each cell is colored according to the normalized magni-
tude of the center-of-mass movement. 
accordingly, we evaluate the joint rotation involved in com-
pleting the level: Í 

CR 1 Õ 
λR 

( (p,q) Rp,q,k − ρk 
R)2 

M(l) = k [1 − exp(− )], (2)
|J | 2σ 2 

k R 

where |J | is the total number of joints. (p, q) denotes a pair of 
adjacent poses p and q in level l . λR ∈ [0, 1] is the importance k 
of joint k for computing the rotation cost. ρR is the target k 
sum of rotation for joint k . σR is set as ρR.k 
Center-of-Mass Movement Cost: Physiotherapy and biome-
chanics researchers commonly use the center-of-mass move-
ment to evaluate the self-balancing difculty of exercise 
tasks [18, 31, 44, 54]. Accordingly, we defne a cost to mea-
sure self-balancing difculty based on the extent of center-
of-mass movement involved in the level: 

( 
Í 
(p,q) Mp,q − ρCM)2 

CCM(l) = 1 − exp(− ), (3)M 2σ 2 
CM 

where ρCM is the target sum of center-of-mass movement 
involved in completing level l . σCM is set as ρCM. 
Prior Costs 
Prior costs are employed to encode some game-specifc level 
design considerations. Diferent types of games have their 
own constraints for assembling a preferable level. In our 
approach, we use the duration cost to control the length of 
the gameplay. Also, we defne the variation cost to intro-
duce changes to the gameplay experience to discourage the 
synthesis of monotonous game levels which could be boring. 
Duration Cost: We include a duration cost to constrain the 
duration of a level: Í 

(p,q) D(p, q) − ρd)2 

CP
D(l) = 1 − exp(− ), (4)

2σd
2 

where p, q ∈ l refer to a pair of adjacent poses. D(p, q) is the 
duration of transitioning from pose p to pose q. To measure 



   

            
        
              
            

           
      

        
           
           

  
    

   
 

               
          

         
           

          
         

            
           

        
     

  

           
           

           
        

        
          

        
         

     

 
     

 
        

       
         

            
             

   

            
           

    
             

          
             

      
        

         
                

            

        

            
          

            
         

        
         

         

      

        

       
    

      

 

      

      
      

      

 

   

     
  

 

           
          

            
              

    
        

       
         

           
          

       
            

           
           

        
          

         
          

          
             

              
           

            
        

         
      
           

          

          
        

       
         

 
          

          

Pose-Guided Level Design 

D(p, q), we recruited 10 people to do all the 100 transitions 
and calculated the average completion time for each transi-
tion from pose p to pose q. ρd is the target duration of the 
game level. σd is set as ρd. Essentially, it evaluates how close 
the duration of the current level is compared to the target 
duration based on a Gaussian distribution. 
Variation Cost: To avoid synthesizing a "monotonic" level, 
we include a variation cost to penalize forming a level where 
the types of a pair of adjacent poses are the same: 

1 Õ 
CP
V(l) = Γ(p, q), (5)

|l | − 1 
(p,q) 

where p and q are adjacent poses. Γ(p, q) returns 1 if p and q 
are of the same pose type; it returns 0 otherwise. 

Other prior costs can be added to the optimization frame-
work depending on the specifc design needs of a game. For 
example, in synthesizing the levels of a dancing game, a 
tempo cost which evaluates how well the dancing poses fol-
low the rythm of the background music can be added. Due to 
the scope of this paper, we keep our cost defntions simple, 
focusing on the body fexibility and self-balancing aspects 
that we want to investigate. 

7 OPTIMIZATION 

Our goal is to synthesize a level assembled by a sequence 
of poses, optimized with respect to the target costs. As a 
level can be assembled by an arbitrary number of poses, the 
solution is searched in a trans-dimensional solution space. 
We employ the reversible-jump Markov chain Monte Carlo 
(RJMCMC) method [16] to search for a solution which can 
cope with changing dimensionality. The method is applied 
with a Metropolis-Hastings state searching step [6]. First, we 
defne a Boltzmann-like objective function: 

1 
f (l) = exp(− CTotal(l)), (6)

t 
where t is the temperature parameter of simulated anneal-
ing [26], which decreases gradually throughout the opti-
mization. At each iteration of the optimization, our approach 
applies a move to the current level l to create a proposed 
level l ′. There are three types of moves that can be selected 
by the optimizer: 

• Add a Pose: a random pose is selected and added to 
a random location of the current level l to create a 
proposed level l ′; 

• Remove a Pose: a pose in the current level l is randomly 
selected and removed to create a proposed level l ′; 

• Modify a Pose: a pose in the current level l is randomly 
selected and changed to another randomly-selected 

′pose, to create a proposed level l . 
The selection probabilities of the add, remove and modify 
moves are pa, pr and pm. By default, we use pa = 0.4, pr = 0.2 
and pm = 0.4, to slightly favor adding and modifying a pose. 

CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk 

To decide whether to accept the proposed level l ′ , our 
approach compares the total cost value CTotal(l ′) of the pro-

′posed level l with the total cost value of CTotal(l) of the 
original level l . To maintain the detailed balance condition 
of the RJMCMC method, the acceptance probability Pr (l ′ |l)
is set according to the move type, as follows. 

To simplify our formulation, we assume that each pose 

For an Add a Pose move, 
pr η |P | − |l | f (l ′ )

Pr (l ′ |l) = min(1, ), 
pa |l ′ | f (l)

For a Remove a Pose move, 

(7) 

pa |l | f (l ′ )
Pr (l ′ |l) = min(1, ), 

pr η |P | − |l ′ | f (l)

For a Modify a Pose move, 

(8) 

f (l ′ )
Pr (l ′ |l) = min(1, )

f (l) 
(9) 

type can only be selected η times rather than an infnite 
number of times, so that the dimensionality of the solution 
space has an upper limit. In other words, a level can be 
assembled by up to η |P | poses. We set η = 15 for each pose 
type in our experiments 

We use simulated annealing to efciently explore the solu-
tion space containing diferent level design solutions. Simu-
lated annealing is controlled by the temperature parameter t . 
At the beginning of the optimization, the temperature t is set 
to be high to prompt the optimizer to aggressively explore 
possible solutions. The temperature drops over iterations un-
til it reaches a very low value near zero. We empirically use 
temperature t = 1.0 at the beginning of the optimization and 
decrease it by 0.1 every 500 iterations until it reaches zero. 
Such setting essentially makes the optimizer more greedy 
in refning the solution towards the end of the optimization. 
Our approach terminates the optimization if the total cost 
change is smaller than 3% over the past 50 iterations. 
Parameter Settings: By default, we set the weights of the 
movement costs as wR = 1.0 and wCM = 1.0; the weights M M 
of the prior costs as wP

D = 1.0 and wP
V = 0.5; and the impor-

tance value of each joint k for computing the rotation cost 
as λR = 1.0. Figure 6(a) shows a level synthesized with the k
default parameters. The designer can control these weights 
and importance values to synthesize diferent types of levels, 
which we illustrate in our experiments. 
Target Settings: The target sum of rotation ρR for each k 
joint k and the target sum of center-of-mass movement ρCM 

can be non-trivial to specify without a reference. To allow 
setting these values intuitively, we manually created several 
reference levels with diferent rotation and center-of-mass 
movement difculties, and computed the sum of rotation ρR 

k 
of each joint k and sum of center-of-mass movement ρCM 

involved in each level, which are taken as reference values 
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(a) Default Parameters (Baseline) 

(b) Medium Rotation 

(c) High Rotation 

(d) Medium Center-Of-Mass Movement 

(e) High Center-of-Mass Movement 

Figure 6: Levels synthesized with diferent movement goals for Just Exercise. (a) shows the levels synthesized with the default 
parameters. (b) and (c) show the levels synthesized with a medium and a high joint rotation target respectively. For each 
pose, the joints’ colors correspond to the amount of rotation in transitioning from the previous pose to the current pose. 
Red corresponds to high rotation. (d) and (e) show the levels synthesized with a medium and high center-of-mass movement 
target respectively. For each pose, an arrow is shown whose direction and color denote the direction and magnitude of the 
center-of-mass translation from the previous pose to the current pose. Red corresponds to high magnitude. 

that a level designer can modify to synthesize a level with 
desired extents of movement difculties. The target duration 
ρd of the level is set as the number of seconds that the level 
should span. By default, we use 60 seconds for a level. 

8 EXPERIMENTS AND RESULTS 

Implementation: We conducted experiments to test our 
approach on an Alienware PC equipped with an Intel Core 
i7-5820K CPU and 32GB of memory. The optimization frame-
work was implemented in C# as a plugin for the Unity game 

engine. The example games were implemented in Unity us-
ing the Kinect SDK. We applied our approach to synthesize 
levels for our illustrative game, Just Exercise. We conducted 
a user evaluation test to validate the synthesized levels. 

To demonstrate the general applicability of our approach, 
we also applied our approach to synthesize pose-guided lev-
els for a classic arcade game called Speed of Light, which we 
describe in our supplementary material. 
Diferent Movement Goals: Our approach is capable of 
generating levels that emphasize diferent body movements 
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by using diferent joint rotation targets ρR and center-of-k 
mass movement target ρCM. Figure 6 shows the results syn-
thesized with diferent targets. 

To synthesize the level with default parameters (Figure 6(a)), 
we frst extracted the joint rotation targets and center-of-
mass movement target from a manually-created reference 
level (see Section 7 for details). The extracted target values 
were modifed slightly to be used as new target values for 
synthesizing a new level automatically by our approach. The 
synthesized level is shown in Figure 6(a), which is taken as 
the baseline level for other syntheses. 
To synthesize the level with medium (Figure 6(b)) and 

high (Figure 6(c)) rotation, we increased the joint rotation 
targets ρR that were used for generating the baseline level k
(Figure 6(a)). Specifcally, for medium rotation, we increased 
the joint rotation target of each joint by a random amount 
with an average increase of 23%. Similarly, for high rotation, 
we increased each joint rotation target by a random amount 
with an average increase of 64%. We include the percentage 
increase of each joint in our supplementary material. As 
Figure 6(b) and (c) show, the level synthesized with high 
rotation target involves more joint rotation compared to the 
baseline level and the medium rotation level, as depicted 
by more joints in red corresponding to high rotation. Note 
that in synthesizing levels for Just Exercise, we only set joint 
rotation targets for 9 joints; the joints without a specifed 
target are given importance value λR = 0.k

To synthesize the level with medium (Figure 6(d)) and high 
(Figure 6(e)) center-of-mass movement, we increased the 
center-of-mass movement target ρCM that was used for gen-
erating the baseline default level (Figure 6(a)). For medium 
center-of-mass movement, we increased the center-of-mass 
movement target by 18%. For high center-of-mass movement, 
we increased the target by 36%. Figure 6(d) and (e) show the 
synthesized levels. The level synthesized with high center-
of-mass movement target involves more translation of the 
center-of-mass compared to the other levels, as depicted by 
more arrows shown in red due to large translation. 
Other Results: By adjusting the parameters and applying 
additional constraints in the optimization, the designer can 
synthesize levels with diferent properties. In the supplemen-
tary material, we include technical details and experiments 
results to demonstrate how our framework can be used for 
synthesizing levels with the same targets but a diferent du-
ration, with an emphasis on exercising a certain body region, 
and with poses pre-specifed by the designer. 
9 EVALUATION 

Trial Experiments 
We conducted a trial experiment with 10 participants to gain 
early insights about our user evaluation design. They were 
asked to play the 5 synthesized levels shown in Figure 6. As 
a result, we set the joint angle error tolerance slightly higher 
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than the mean error for each joint, as follows: 15 degrees for 
the elbow joints; 10 degrees for the hips and knees joints; and 
5 degrees for the spine base joint, based on the participants’ 
feedback on the matching difculty and their performances. 
Refer to the supplementary document for more details about 
this trial experiment. 

Evaluation Experiments 
To conduct our user evaluation, we used the game Just Ex-
ercise and the 5 levels synthesized with default parameters, 
medium rotation, high rotation, as well as with medium and 
high center-of-mass movement. Figure 6 shows the levels 
used. The main goal is to evaluate how well the participants 
followed the joint rotation and center-of-mass movement 
targets specifed for synthesizing the levels. 
Participants: 30 participants were recruited to play the 
synthesized levels, which were diferent people from trial 
experiments. They were university students and stafs, whose 
average age was 27 ± 10 years old and average body mass 
index(BMI) was 23 ± 5kд/m2. Our supplementary material 
contains more demographic information. 
Procedure: Our evaluation procedure was IRB-approved. 
The participant was briefed about the game control and given 
a warm-up session to get familiar with the game. Then we 
asked the participant to play the 5 levels in a randomized 
order. The participant was asked to match the poses of the 
levels shown on screen. A level was completed if all of its 
sequence of poses had been matched. The participant had 
a 3-minute break after playing each level. In the end, the 
participant flled out an enjoyment rating questionnaire. 
Measurements: We used a Kinect sensor to capture the 
participants’ full body motion during the experiments for 
analysis. Before the evaluation, we calibrated the Kinect 
sensor with respect to the participant. The captured body 
motion data includes the participant’s joint positions and ro-
tations at every frame during the gameplay. This motion cap-
ture mechanism is non-intrusive and allows the participants 
to move freely and comfortably, like playing an ordinary 
motion-based exergame on a home game console. 
Analysis Methods: We examined the descriptive statistics 
of joint rotation and center-of-mass movement of partici-
pants in completing diferent levels. We used the Mauchly’s 
test statistic to test the assumption of sphericity. One-way 
repeated measure analysis of variance (ANOVA) was used to 
compare the body movement results among the three levels 
synthesized with default, medium and high joint rotation 
targets, and among the three levels synthesized with default, 
medium and high center-of-mass movement targets. Paired 
t-test was used to compare the mean diference in each pair 
of levels synthesized with diferent targets (e.g., default and 
medium, default and high, medium and high), and the ef-
fect sizes were analyzed. Note that when we evaluated joint 
rotation, we excluded the shoulder joints due to a Kinect’s 
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(a) Joint Rotation (b) Center-of-Mass Movement 
Figure 7: (a) Participants’ average total joint rotations compared with the joint rotation targets used for synthesizing each 
level. D, M and H refer to the levels with default, medium and high joint rotation targets. The result and target for each joint 
is shown. (b) Participants’ average total amount of center-of-mass movement compared with the center-of-mass movement 
targets used for synthesizing each level. Overall, the participants’ results follow similar upward trends as the targets. 

Levels Spine B. R. Elbow L. Elbow R. Hip 
Default 11/15(+4) 34/27(-7) 38/32(-6) 29/25(-4) 
Medium 14/17(+3) 35/30(-5) 47/40(-7) 31/28(-3) 
High 14/17(+3) 62/51(-11) 66/54(-12) 35/29(-6) 
Levels R. Knee L. Hip L. Knee 
Default 21/19(-2) 28/23(-5) 23/20(-3) 
Medium 23/20(-3) 31/25(-6) 27/21(-6) 
High 32/24(-8) 41/35(-6) 39/32(-7) 

Table 1: Average joint rotation (in degrees) per chunk 
in the results of the default, medium and high joint 
rotation levels. For each joint, a fraction (result/target) 
is shown; bracketed value is the diference. 

tracking issue we experienced, which we explained in the 
supplementary material with an experiment. 

In addition, we used the physical activity enjoyment ques-
tionnaire (PACES) [24] to evaluate the enjoyment and vitality 
of physical activity perceived by the participants. 

Results and Discussion 

Joint Rotation: Figure 7(a) shows the average total joint 
rotations of participants in completing the levels synthesized 
with default, medium and high joint rotation targets. From 
the general trend of the results, we observe that the total joint 
rotations increase with the joint rotation targets used for 
synthesizing the levels. Table 1 shows the average diference 
between the joint rotation targets and results attained by 
the participants per chunk. The average absolute diferences 
range from 3 to 12 degrees (smaller than the error thresholds). 
We conducted a one-way repeated measure ANOVA on 

the joint rotation results of the three levels to test whether 
there was a signifcant diference in the amount of joint ro-
tations attained by the participants. Table 3 shows the result 
for each joint. Mauchly’s test of sphericity indicated that the 
assumption of sphericity was not violated for all joints ex-
cept for the left knee joint. Therefore, a Greenhouse-Geisser 
correction was used for the left knee joint. The p-values (all 
< 0.05) indicate that there were signifcant diferences in the 
joint rotation results under the three diferent levels. 

We performed paired t-tests to examine where the signif-
cant efect lies for each pair of levels (e.g., Default vs. Medium 
Rotation). Table 2 shows the descriptive statistics. Except 
for the spine-base and right hip joints in the medium vs. 
high rotation levels comparison, all joints show a signifcant 
increase (p < 0.05) in joint rotation results as the targets 
increase. The efect sizes (η2) in default vs. high rotation 
levels is greater than those in default vs. medium rotation 
levels. The average percent increase per chunk from default 
to medium rotation level is 12% and from default to high 
rotation level is 47%, which are relative close to the corre-
sponding increases in the targets which are (23%) and (64%). 

From the results, we observe that the joint rotation results 
of the participants increase with the joint rotation targets 
used for synthesizing the levels in general. 
Center-of-Mass Movement: Figure 7(b) shows the center-
of-mass (COM) movement targets specifed for synthesizing 
the levels with default, medium and high COM movements. It 
also shows the COM movements attained by the participants, 
which increase with the targets accordingly. 

Similarly, we conducted the one-way repeated measure 
ANOVA test on the COM movement results of the three 
levels with default, medium and high COM movement tar-
gets. Mauchly’s test, X 2 = 0.762, p = 0.683 did not indicate 
any violation of sphericity. Table 3 shows that there was a 
signifcant diference among the results of the three levels 
(F (2, 58) = 73.074, p < 0.0001). 

Furthermore, paired t-test and other descriptive statistical 
results were shown in Table 4, which indicated that there 
was a signifcant diference between the result of the default 
and medium levels, and between the default and high levels. 
However, the diference in results between the medium and 
high levels is not statistically signifcant (p = 0.060). 
On the other hand, the average percentage increase in 

COM movement results from the default to medium level 
is 38.4% and from the default to high level is 45.7%, which 
are higher than the respective percentage increases in COM 
movement targets from the default to medium level (18%) 
and from the default to high level (36%). 
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Default vs. Medium Rotation 
two-tail p-value 

Spine-base 
0.037 

L. Elbow 
0.001 

R. Elbow 
<0.001 

L. Hip 
<0.001 

L. Knee 
0.004 

R. Hip 
0.003 

R. Knee 
0.018 

eta squared 0.414 0.773 2.974 0.860 0.439 0.568 0.369 
mean increase % 11% 9% 28% 13% 7% 9% 6% 
Medium vs. High Rotation 
two-tail p-value 

Spine-base 
0.285 

R. Elbow 
<0.001 

L. Elbow 
<0.001 

R. Hip 
0.220 

R. Knee 
<0.001 

L. Hip 
<0.001 

L. Knee 
<0.001 

eta-squared N/A 6.62 4.27 N/A 1.15 2.14 2.26 
mean increase% 6.87 % 74.10% 33.88% 3.23 % 20.34 % 38.80 % 53.93 
Default vs. High Rotation 
two-tail p-value 

Spine-base 
0.002 

R. Elbow 
<0.001 

L. Elbow 
<0.001 

R. Hip 
<0.001 

R. Knee 
<0.001 

L. Hip 
<0.001 

L. Knee 
<0.001 

eta squared 0.667 6.836 6.771 0.922 1.603 2.500 2.694 
mean increase % 15.891% 89.202% 70.921% 15.909% 28.192% 50.246% 62.160% 

Table 2: Paired t-test results for joint rotations. The test was done using the participants’ joint rotation results in 
levels with default, medium and high joint rotation targets. Most joint rotation results show a signifcant difer-
ence (p<0.05, bolded) between levels. 

Spine B. L. Elbow R. Elbow L. Hip 
p value 0.007 <0.0001 <0.0001 <0.0001 
η2 0.156 0.967 0.971 0.413 
df 2 2 2 2 
df2 58 58 58 58 
F 5.346 858.48 963.597 20.434 

L. Knee R. Hip R. Knee COM 
p value <0.0001 <0.0001 <0.0001 <0.0001 
η2 0.690 0.845 0.884 0.716 
df 2 2 1.622 2 
df2 58 58 47.031 58 
F 64.485 158.571 221.753 73.074 

Table 3: One-way repeated measure ANOVA results. 
The test was done on the participants’ results among 
the 3 levels with default, medium and high joint ro-
tation targets; and among the 3 levels with default, 
medium and high center-of-mass (COM) movements. 
All joint rotation and COM movement results show a 
signifcant diference (p<0.05) among the levels. 

D-M D-H M-H 
two-tail p-value <0.001 «0.001 0.060 
η2 1.876 1.96 N/A 
mean increase % 38.4% 45.7% 6.2% 

Table 4: Paired t-test results for center-of-mass move-
ment. The test was done using the participants’ COM 
movement results in levels with default (D), medium 
(M) and high (H) COM movement targets. Signifcant 
diference (p<0.05) was found between default and 
medium levels, and between default and high levels. 

Although we can observe that the COM movement results 
increase with the COM movement targets, the results exceed 
the targets by a relatively large margin as depicted in Fig-
ure 7(b). One possible reason for such deviation is that in 
our game we did not set a threshold for determining COM 
movement matching because such a threshold might be un-
intuitive to the player. Therefore the participants may not 
match the COM movement target as closely. 

Question Mean S.D. 
I enjoy it 5.8 1.4 
I like it 5.4 1.6 
I feel good physically 5.8 1.3 
It’s a lot of fun 5.4 1.3 
I am not at all frustrated 5.4 1.6 

Table 5: Physical enjoyment rating results. Scores 
range from 1 (strongly disagree) to 7 (strongly agree). 

Physical Activity Enjoyment Rating 

Physical activity enjoyment scale questionnaire (PACES) is 
frequently used in exercise science as a quantitative mea-
sure of perceived enjoyment level for an exercise activity. 
It consists of 18 7-point Likert Scale questions validated by 
Kendzierski and DeCarlo [24] on young adults for evaluating 
enjoyment. Table 5 showed some of the results for Just Exer-
cise rated by our user evaluation participants. We include full 
results in the supplementary material. Overall, participants 
rated about 5.6 out of 7 for how much they enjoyed the game, 
and our average PACES percentage score was 79%. 
Grave et al. used the average PACES percentage scores 

to compare the enjoyment of exergames on Wii Fit with 
aerobic exercises [15]. Comparing with their results, the 
PACES percentage score of Just Exercise (79%) is higher than 
that of Wii Yoga (67%) and Wii Muscle (74%), but lower than 
that of Wii Balance (80%) and Wii Aerobic (85%). It is also 
higher than that of regular exercises such as brisk treadmill 
walking (69%) and treadmill jogging (77%). We note that the 
comparison may only be taken as a general reference due 
to diferent groups of subjects. We believe the enjoyment of 
Just Exercise is comparable to common exergames. 
User Feedback 

Participants gave us additional feedback after the evaluation. 
Most commented that the game was entertaining and moti-
vating for exercising. Some thought that the intensity of our 
difcult levels was comparable to that of a regular work-out 
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session if they played it for a longer duration. A few par-
ticipants who gave low enjoyment ratings commented that 
some poses were demanding and difcult to match in terms 
of stretching and self-balancing requirements. Some said 
that this kind of exergames, added with more game elements 
such as dynamic sound and visual efects, would be their 
choices for replacing routine work-out exercises. 

10 SUMMARY 

We demonstrated that our optimization-based level design 
framework can take into account the player’s the joint ro-
tations and center-of-mass movement, as well as common 
level design factors such as duration and variation which can 
be added as prior costs. Other specifc game design factors 
(e.g., tempo consideration for a dancing game) can be incor-
porated similarly. Our framework can be generally applied to 
optimize body fexibility and balance requirements of other 
motion-based games. In the supplementary material, we de-
tail how it can be applied to synthesize levels for Speed of 
Light, a classic arcade game. We also show how designers can 
generate a variety of levels with specifc needs by adjusting 
the weights and constraints of our optimization framework. 
Besides, our approach can be applied for synthesizing levels 
for motion-based games (e.g., Refex Ridge of Kinect Adven-
tures! and Climbey of Steam VR) where the required player 
actions (e.g., climb, squat, jump, dodge) are optimized against 
the joint rotation and center-of-mass movement targets. 

Mueller et al. [34, 37] envisioned that future bodily games 
will allow players to experience their bodies as digital play, 
where the players’ emotions, feelings, stimulation and per-
ception will be part of the gameplay. Towards this endeav-
our, our approach contributes by synthesizing gameplay that 
takes the player’s physical movements into account in a 
quantifable manner. 

Limitations and Future Work 

We measured poses through a Kinect sensor. To make it eas-
ier for tracking, we used poses which are simple to learn and 
whose joints do not occlude each other from the sensor. In 
future work, it would be interesting to investigate the possi-
bility of replacing the body tracking mechanism with other 
devices, such as motion-capture suits (e.g., Rokoko), which 
allow tracking and using more complex poses like those 
in daily exercises for creating more varieties of exergames. 
In our preliminary experiments, we tested with the Enfux 
motion-capture suit but found that the tracking results were 
unstable and too noisy for analyzing, so we resorted to using 
a Kinect sensor for tracking. 
In precomputation, we assume that when transitioning 

from one pose to another pose, players follow the joint move-
ment trajectory that involves the least amount of joint rota-
tion for each joint. In reality, the joint movement trajectories 

Y. Zhang et al. 

may vary depending on the players’ joint fexibility, self-
balancing capability and movement style. It is possible that 
players make some extra movements during a transition. We 
estimate the joint rotation with the above assumption for 
simplicity, considering that players should not do a lot of 
extra movements during each transition which only lasts for 
about one to two seconds. 
While our approach mainly focuses on body movement 

factors, there are other factors in game level design that 
need to be taken into account. Cognitive considerations (e.g., 
player’s attention control) are not directly incorporated due 
to the scope of our paper. However, our body movement 
(joint-rotation, center-of-mass movement) and duration con-
siderations were inspired by Fitts’ Law, which was found 
to be related to cognitive factors [45]. For future work, we 
would like to extend our framework to consider cognitive 
factors associated with diferent movement difculties. 
Also, the synthesized level may lack aesthetic consider-

ations, our optimization framework allows the designer to 
incorporate additional considerations (e.g., rhythm) accord-
ing to the specifc needs of a game. 
We synthesized levels for user evaluation purposes. The 

levels are short compared to a typical workout which usually 
lasts for 30 to 45 minutes. In practice, levels should be synthe-
sized with a longer duration and with more types of poses. 
While we showed in our evaluation that our synthesized 
levels can guide users to achieve the specifed joint rota-
tion and center-of-mass movement goals, it would be helpful 
to conduct a more long-term and large-scale evaluation to 
study the possible body movement training efects brought 
about by practicing with the synthesized levels regularly for 
a prolonged period. 

Previous research [13, 27, 39, 54] has shown that exergames 
can efectively improve the body fexibility and self-balancing 
capability of older adults. While our user evaluation was con-
ducted mainly with young adults, the fexibility of our level 
design framework would allow synthesizing appropriate 
levels for aged players, for example, by adjusting the joint 
rotation target ρR, center-of-mass movement target ρCM and 
duration target ρd; and also by adjusting the importance val-
ues λR of each joint to impose diferent amounts of exercise k
on diferent body regions (refer to supplementary material 
for examples) depending on the player’s body condition. In 
future work, we would like to investigate the training efects 
of our synthesized levels on aged populations. 
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